Nonparametric least squares estimation of a multivariate convex regression function

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric regression estimation using penalized least squares

We present multivariate penalized least squares regression estimates. We use Vapnik{ Chervonenkis theory and bounds on the covering numbers to analyze convergence of the estimates. We show strong consistency of the truncated versions of the estimates without any conditions on the underlying distribution.

متن کامل

Variance Function Estimation in Multivariate Nonparametric Regression

Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established. Our work uses the approach that generalizes the one used in Munk et al (2005) for the constant variance case. As is the case when the number of dimensions d = 1, and very much contrary to the common practice, it is often not desirable to base the estimator of t...

متن کامل

Representation Theorem for Convex Nonparametric Least Squares

We examine a nonparametric least squares regression model where the regression function is endogenously selected from the family of continuous, monotonic increasing and globally concave functions that can be nondifferentiable. We show that this family of functions is perfectly represented by a subset of continuous, piece-wise linear functions whose intercept and slope coefficients are constrain...

متن کامل

Nonparametric Estimation of Multivariate Convex-transformed Densities.

We study estimation of multivariate densities p of the form p(x) = h(g(x)) for x ∈ ℝ(d) and for a fixed monotone function h and an unknown convex function g. The canonical example is h(y) = e(-y) for y ∈ ℝ; in this case, the resulting class of densities [Formula: see text]is well known as the class of log-concave densities. Other functions h allow for classes of densities with heavier tails tha...

متن کامل

Nonparametric Least Squares Estimation in Derivative Families

Cost function estimation often involves data on a function and a family of its derivatives. It is known that by using such data the convergence rates of nonparametric estimators can be substantially improved. In this paper we propose series-type estimators which incorporate various derivative data into a single, weighted, nonparametric, least-squares procedure. Convergence rates are obtained, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2011

ISSN: 0090-5364

DOI: 10.1214/10-aos852